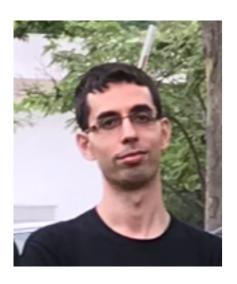
THERMODYNAMIC UNCERTAINTY RELATIONS FROM FLUCTUATION THEOREMS

Gabriel T. Landi Instituto de Física da Universidade de São Paulo

Quantum Thermodynamics for Young Scientists Bad Honnef, Feb 06, 2020

Summary



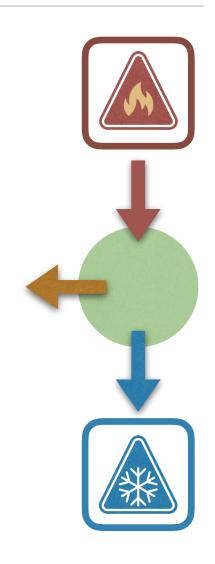
André M. Timpanaro, Giacomo Guarnieri, John Goold, GTL, "Thermodynamic uncertainty relations from exchange fluctuation theorems". *Phys. Rev. Lett.* **123**, 090604 (2019) (arXiv 1904.07574)

Why entropy production matters

1st and 2nd laws for a system coupled to two baths:

$$\frac{dU}{dt} = \dot{Q}_h + \dot{Q}_c + \dot{W} = 0$$
$$\frac{dS}{dt} = \dot{\Sigma} + \frac{\dot{Q}_h}{T_h} + \frac{\dot{Q}_c}{T_c} = 0$$

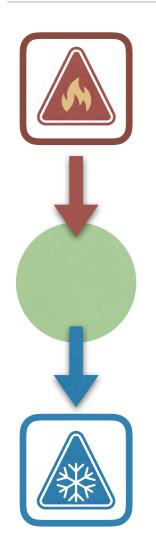
$$\eta = -\frac{\dot{W}}{\dot{Q}_h} = 1 + \frac{\dot{Q}_c}{\dot{Q}_h} = 1 - \frac{T_c}{T_h} - \frac{T_c}{\dot{Q}_h}\dot{\Sigma}$$

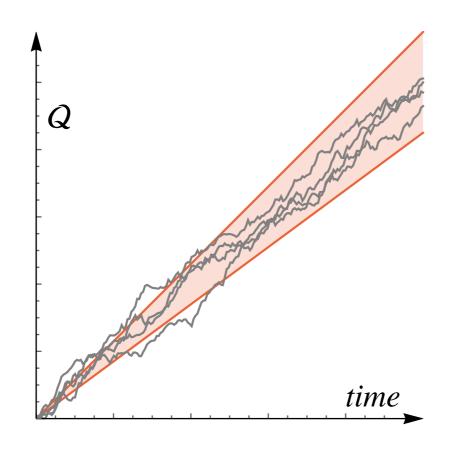


Entropy production is therefore the reason the efficiency is smaller than Carnot:

$$\eta = \eta_C - \frac{T_c}{\dot{Q}_h} \dot{\Sigma}$$

Thermodynamic Uncertainty Relations (TURs)





$$\frac{\operatorname{var}(\dot{Q})}{\mathbb{E}(\dot{Q})^2} \ge \frac{2}{\mathbb{E}(\dot{\Sigma})}$$

$$\Sigma = \delta \beta Q$$
 (in the simplest case)

- Simple, elegant and powerful.
- Counterintuitive: To reduce the fluctuations, the process should be more irreversible.

- Derived only for the steadystate of classical Markov chains.
- Can be violated in many relevant scenarios (e.g. thermoelectrics).

A. C. Barato, U. Seifert, Physical Review Letters, 114, 158101 (2015)

Implications for mesoscopic engines

- In an autonomous engine the output power is \dot{W}
- The TUR in this case then reads

$$\frac{\operatorname{var}(\dot{W})}{\mathbb{E}(\dot{W})^2} \ge \frac{2}{\mathbb{E}(\dot{\Sigma})}$$

From our previously derived result:

$$\eta = \eta_C - \frac{T_c}{\dot{Q}_h} \dot{\Sigma} \quad \to \quad \mathbb{E}(\dot{\Sigma}) = \frac{\mathbb{E}(\dot{Q}_h)}{T_c} (\eta_C - \eta)$$

Thus:

$$\frac{\operatorname{var}(\dot{W})}{\mathbb{E}(\dot{W})^2} \ge \frac{2T_c}{\mathbb{E}(\dot{Q}_c)} \frac{1}{\eta_C - \eta}$$

Thus:

$$\frac{\operatorname{var}(\dot{W})}{\mathbb{E}(\dot{W})^2} \ge \frac{2T_c}{\mathbb{E}(\dot{Q}_c)} \frac{1}{\eta_C - \eta}$$

Finally, we note that $\eta = \frac{\mathbb{E}(W)}{\mathbb{E}(\dot{Q})}$, so that

$$\operatorname{var}(\dot{W}) \ge 2T_c |\mathbb{E}(\dot{W})| \frac{\eta}{\eta_C - \eta}$$

- If you wish to operate the engine close to Carnot efficiency, you pay the price that the fluctuations may become very large.
 - To curb fluctuations, the engine should be operated irreversibly!
 - Goes against everything we learn in undergraduate thermodynamics.

P. Pietzonka and U. Seifert, *Phys. Rev. Lett.*, **120**, 190602 (2017)

PERSPECTIVE

https://doi.org/10.1038/s41567-019-0702-6

Thermodynamic uncertainty relations constrain non-equilibrium fluctuations

Jordan M. Horowitz 1,2,3 and Todd R. Gingrich 4

Experimental study of the thermodynamic uncertainty relation

Soham Pal,¹ Sushant Saryal,¹ D. Segal,^{2,3} T. S. Mahesh,¹ and Bijay Kumar Agarwalla^{1,*}

1912.08391

Thermodynamic uncertainty relation in atomic-scale quantum conductors

Hava Meira Friedman,¹ Bijay K. Agarwalla,² Ofir Shein-Lumbroso,³ Oren Tal,³ and Dvira Segal^{1,4,*}

2002.00284

TUR from fluctuation theorems

André M. Timpanaro, Giacomo Guarnieri, John Goold, GTL, "Thermodynamic uncertainty relations from exchange fluctuation theorems". *Phys. Rev. Lett.* **123**, 090604 (2019) (arXiv 1904.07574)

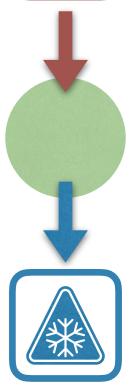
EXCHANGE FLUCTUATION THEOREM

Fluctuation theorems for thermodynamic processes usually have the form

$$\frac{P_F(\Sigma)}{P_B(-\Sigma)} = e^{\Sigma}$$

- e.g. Crooks theorem for work: $\Sigma = \beta(W \Delta F)$
- FTs, however, compare a *forward* with a *backward* process.
- In some systems, both coincide. These are called Exchange FTs:

$$\frac{P(\Sigma)}{P(-\Sigma)} = e^{\Sigma}$$



- This is much stronger: it is a symmetry on a single probability distribution.
- **Example:** direct heat exchange: $\Sigma = \delta \beta Q$

Motivated by this, we proved the following theorem:

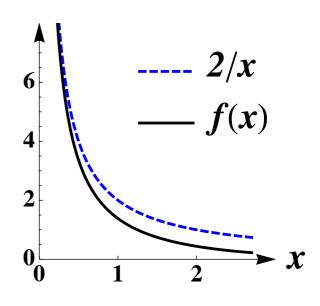
Theorem ("TUR de force"). For fixed finite $\mathbb{E}(\Sigma)$, the probability distribution $P(\Sigma)$ satisfying $P(\Sigma)/P(-\Sigma) = e^{\Sigma}$, with the smallest possible variance (the minimal distribution) is

$$P_{min}(\Sigma) = \frac{1}{2\cosh(a/2)} \left\{ e^{a/2} \delta(\Sigma - a) + e^{-a/2} \delta(\Sigma + a) \right\},\,$$

where the value of a is fixed by $\mathbb{E}(\Sigma) = a \tanh(a/2)$. For this distribution

$$Var(\Sigma)_{min} = \mathbb{E}(\Sigma)^2 f(\mathbb{E}(\Sigma)),$$

where $f(x) = csch^2(g(x/2))$, csch(x) is the hyperbolic cosecant and g(x) is the function inverse of $x \tanh(x)$.



For any other distribution we must then have:

$$\frac{\mathrm{var}(\Sigma)}{\mathbb{E}(\Sigma)^2} \ge f(\mathbb{E}(\Sigma))$$

TUR de force ISTIGHT

- Our TUR is the tighest (saturable) bound for this scenario.
- And we know which thermodynamic process saturates it.
- This is relevant because, around the same time, similar papers appeared.
 - But all derived a looser bound with

$$f(x) = \frac{2}{e^x - 1}$$

This bound, however, is never tight.

Hasegawa & Vu 1902.06376.
Proesman & Horowitz 1902.07008.

Potts & Samuelsoon 1904.04913.

EXTENSION TO MULTIPLE CHARGES

We can also generalize our framework to Exchange FTs involving multiple charges:

$$\frac{P(\mathcal{Q}_1, \dots, \mathcal{Q}_n)}{P(-\mathcal{Q}_1, \dots, -\mathcal{Q}_n)} = e^{\sum_i A_i \mathcal{Q}_i}$$

- The entropy production in this case is $\Sigma = \sum_i A_i \mathcal{Q}_i$
- ex: heat engine FT:

$$\frac{P(Q_h, W)}{P(-Q_h, -W)} = e^{(\beta_h - \beta_c)Q_h + \beta_c W}$$

In this case we obtain the matrix bound

$$C - f(\mathbb{E}(\Sigma)) q q^{\mathrm{T}} \ge 0$$

$$q_i = \mathbb{E}(Q_i)$$

$$C_{ij} = \text{cov}(Q_i, Q_j)$$

M. Campisi, J. Pekola, R. Fazio, NJP, 17, 035012 (2015)

$$C - f(\mathbb{E}(\Sigma))qq^{\mathrm{T}} \ge 0$$

$$q_i = \mathbb{E}(Q_i)$$

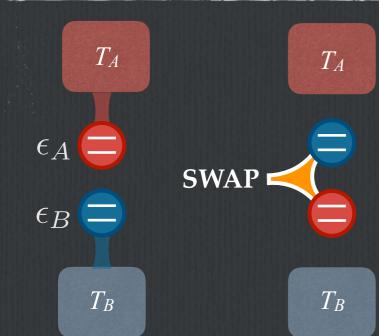
$$C_{ij} = \text{cov}(Q_i, Q_j)$$

- This says that the matrix above is positive semi-definite.
- As a consequence, all diagonal entries must be positive, which implies an individual TUR for each charge:

$$\frac{\operatorname{var}(\mathcal{Q}_i)}{\mathbb{E}(\mathcal{Q}_i)^2} \ge f(\mathbb{E}(\Sigma))$$

- In addition, it also places restrictions on the covariances:
 - If G is psd then $G_{ij}^2 \leq G_{ii}G_{jj}$
- This also imposes a constraint on the sign of the covariances

$$\frac{\mathbb{E}(\mathcal{Q}_i)^2}{\operatorname{var}(\mathcal{Q}_i)} + \frac{\mathbb{E}(\mathcal{Q}_j)^2}{\operatorname{var}(\mathcal{Q}_j)} \ge \frac{1}{f(\mathbb{E}(\Sigma))} \quad \to \quad \operatorname{sign}(C_{ij}) = \operatorname{sign}(\mathbb{E}(\mathcal{Q}_i)\mathbb{E}(\mathcal{Q}_j))$$



 T_A

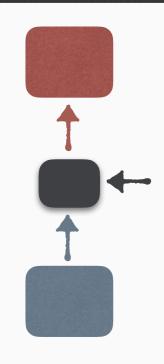
SWAP engine

$$\langle Q_h \rangle = \epsilon_A (f_A - f_B)$$

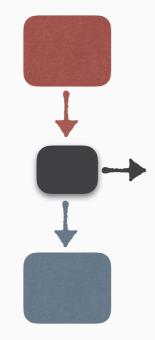
$$\langle Q_c \rangle = -\epsilon_B (f_A - f_B)$$
 $f_i = \frac{1}{e^{\beta_i \epsilon_i} + 1}$

$$f_i = \frac{1}{e^{\beta_i \epsilon_i} + 1}$$

$$\langle W \rangle = -(\epsilon_A - \epsilon_B)(f_A - f_B)$$

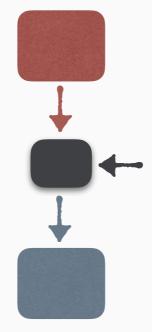


$$\frac{\epsilon_B}{\epsilon_A} < \frac{\beta_A}{\beta_B}$$



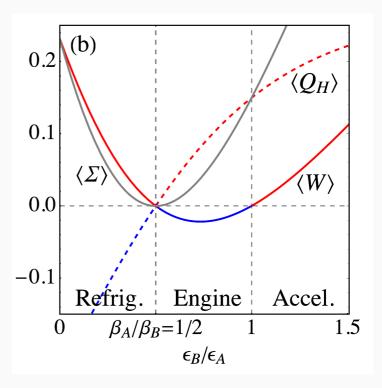
Engine

$$\frac{\epsilon_B}{\epsilon_A} < \frac{\beta_A}{\beta_B} \qquad \qquad \frac{\beta_A}{\beta_B} < \frac{\epsilon_B}{\epsilon_A} < 1 \qquad \qquad 1 < \frac{\epsilon_B}{\epsilon_A}$$



Accelerator

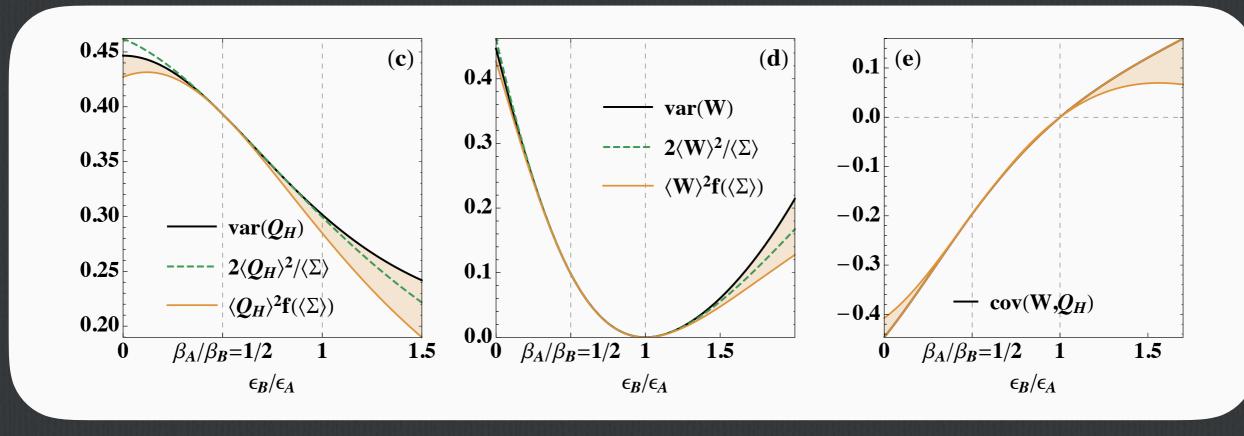
$$1 < \frac{\epsilon_B}{\epsilon_A}$$

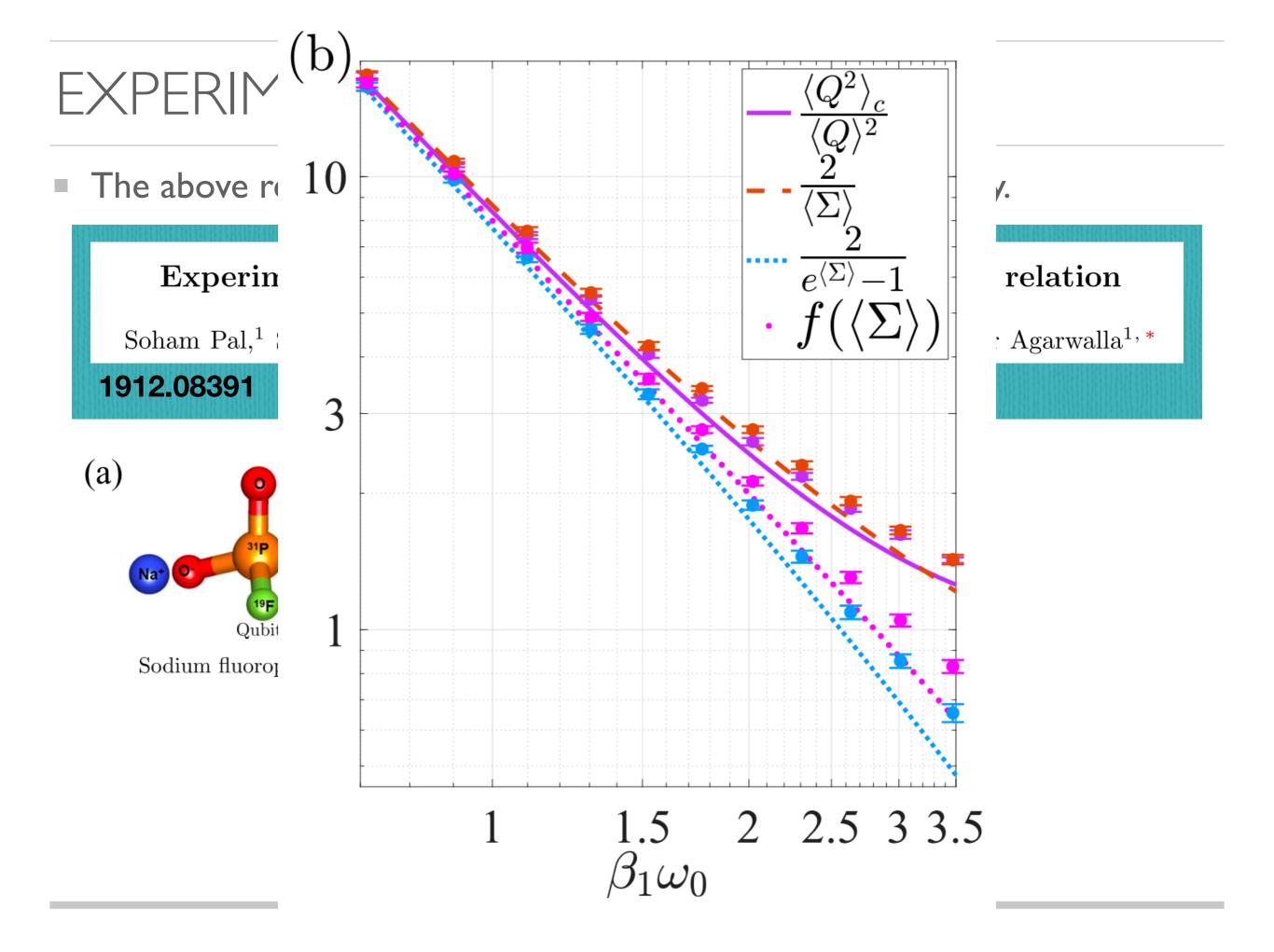


M. Campisi, J. Pekola, R. Fazio, NJP, 17, 035012 (2015)

SWAP engine

$$\frac{P(Q_H, W)}{P(-Q_H, -W)} = e^{(\beta_B - \beta_A)Q_H + \beta_B W}$$





ACHIEVABILITY OF THE OPTIMAL PROCESS

Theorem ("TUR de force"). For fixed finite $\mathbb{E}(\Sigma)$, the probability distribution $P(\Sigma)$ satisfying $P(\Sigma)/P(-\Sigma) = e^{\Sigma}$, with the smallest possible variance (the minimal distribution) is

$$P_{min}(\Sigma) = \frac{1}{2\cosh(a/2)} \left\{ e^{a/2} \delta(\Sigma - a) + e^{-a/2} \delta(\Sigma + a) \right\},\,$$

where the value of a is fixed by $\mathbb{E}(\Sigma) = a \tanh(a/2)$. For this distribution

$$\operatorname{Var}(\Sigma)_{min} = \mathbb{E}(\Sigma)^2 f(\mathbb{E}(\Sigma)),$$

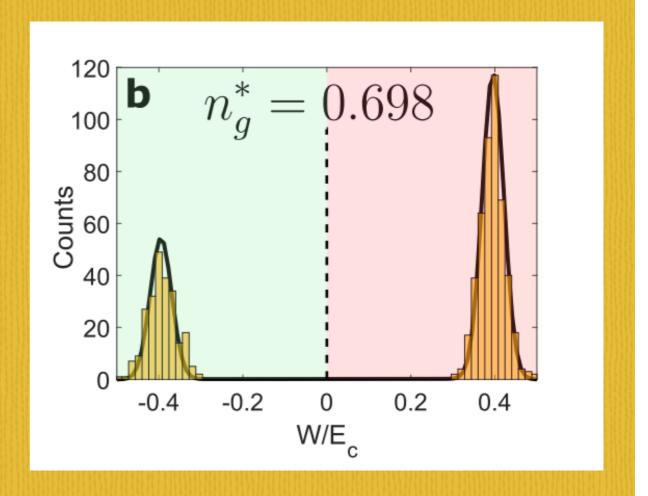
where $f(x) = csch^2(g(x/2))$, csch(x) is the hyperbolic cosecant and g(x) is the function inverse of $x \tanh(x)$.

The minimal process is one which has only 2 points in the support.

But is this achievable in practice?

i.e., is the bound saturable?

- A beautiful illustration of this was giv
- They were interested in work extrac
- The question they posed was:
 - which process maximizes $P(W \ge \Lambda)$
 - $\mathbb{E}(e^{-\beta W}) = e^{-\beta \Delta F} \text{ and } P(W < W_{\text{min}})$



• Answer: $P(W) = p\delta(W - \Lambda) + (1 - p)\delta(W - W_{min})$

where.
$$p = P(W \ge \Lambda) = \frac{e^{-\beta \Delta F} - e^{\beta W} \text{min}}{e^{\beta \Lambda - e^{\beta W}} \text{min}}$$

V. Cavina, A. Mari and V. Giovannetti, Scientific Reports, 6, 29282 (2016).

O. Maillet, *PRL*, **122**, 150604 (2019)

Conclusions

- In this talk I discussed how TURs can be viewed as a consequence of Fluctuation Theorems.
- I believe that this is important because:
 - a. It sheds light on the phy
 - b. Shows that FTs not only additional constraints of

c. Introduces the idea of a optimizes a given therm

IFUSP